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Abstract. Many to many reliable broadcast is useful while building dis-
tributed services like group membership and agreement in a MANET.
Efforts in implementing reliable broadcast optimised for MANETs have
resulted in new protocols that reduce the number of transmissions re-
quired to achieve reliable broadcast. A practical implementation of re-
liable broadcasts requires the ability to detect message stability, and
there is still a need to develop protocols that efficiently support message
stability determination in a MANET. In this paper we describe such a
protocol that is independent of the broadcast optimisation being used,
and focuses on providing efficient message stability. As the main idea of
the protocol, we define a message dependency relationship and use this
relationship to implement reliable broadcast as well as message stability
detection. Simulations for mobile and static scenarios show our protocol
has only a minimal performance degradation with node mobility.
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1 Introduction

In mobile ad-hoc networks (MANETs) frequent topology changes and changing
membership pose new challenges for application developers. Distributed services
like replication, agreement and group membership help developers build appli-
cations for MANETs. Many to many reliable broadcast is useful while building
these distributed services.

A practical implementation of many to many reliable broadcast service re-
quires addressing the problem of determining when a message has become stable
at the participating nodes. A message is said to be stable when all nodes partic-
ipating in the reliable broadcast have received the message; guaranteeing that
no node will ask for the message again. This allows nodes to delete the stable
message from their buffers. In this paper we describe a many to many reliable
broadcast protocol that supports efficient determination of message stability in
a MANET, and show how it scales with node mobility and node density.

The main idea behind the protocol is the use of dependency relationship
between messages broadcast over multiple hops and using these relationships to
implement reliability and determine message stability. In this paper we describe
this dependency relationship in detail and show how this relationship is used to
implement reliable broadcast and further how it allows each participating node to
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determine independently whether a message has been received and delivered at
all other nodes. Finally, we show how this ability is easily extended to determine
message stability.

In the course of developing reliable broadcast protocols for MANETs, nu-
merous broadcast optimisations have been developed. These optimisations are
required to handle the broadcast storm problem as first presented in [1]. The
same paper also presented some initial solutions to the problem. The protocol
described in this paper is architectured so that it allows any of the optimisations
to be deployed below our broadcast and the stability determination algorithm.
This allows for flexible use of our scheme, depending on the optimisation avail-
able in the MANET.

Given the exorbitant energy costs of message transmissions [2] in a MANET,
we trade reduced message transmissions for increased computation for every mes-
sage stabilised.We show how we achieve the same by using implicit acknowledge-
ments through message dependencies. This requires working with large complex
data structures, but saves on the number of message transmissions.

The protocol we present can be easily extended to provide an agreement
protocol and further a virtually synchronous membership service, but we do not
describe these in this paper. The theme of this paper remains achieving message
stability in a MANET. Simulation results show that our protocol is not adversely
affected by node mobility; and the number of message transmissions required to
determine message stability is dependent only on the size of the network.

2 Related Work

Given the importance of reliable broadcast for building applications for MANETs,
and recognising the challenges presented by the shared medium in a MANET, a lot
of effort has been focused towards reducing redundant broadcasts and improving
the reliability of broadcasts in a MANET.

A redundant broadcast is called redundant as it does not communicate a
broadcast message to any additional nodes. Numerous techniques to reduce re-
dundant broadcasts and improve reliability have been developed. These tech-
niques vary in the amount of information utilised to recognise a broadcast as
redundant or not. The simplest techniques are probabilistic flooding as pre-
sented in [3][4] and the counter based technique presented in the seminal paper
identifying the broadcast storm problem [1]. Other techniques as [5][6][7][8] in-
volve keeping track of neighbourhood information and possibly the path that
a message took to the current node. Other techniques such as [9] utilise the
information available from the underlying routing protocol.

Work has also gone into comparing these techniques through different simu-
lations parameters. [10] and [11] present detailed study of how various techniques
compare against each other. [11] also presents a clean characterisation of various
techniques depending on the knowledge utilised by a node to determine whether
it should rebroadcast a received message.
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For practical implementations of reliable broadcasts and other distributed
services it is imperative to efficiently determine message stability. To our knowl-
edge [12] is the only system implementation presented in literature that addresses
the problem of message stability detection in MANETs. The system uses a gos-
sip based approach to detect message stability. The gossipped messages act as
explicit acknowledgements for messages, in contrast, our system uses implicit
acknowledgements implemented via message dependencies. Baldoni et al. in [13]
discuss a session based approach to implement message stability in partitionable
MANETs.

3 Reliable Broadcast and Message Stability

In this section we present in detail our approach to implementing a reliable many
to many broadcast that allows efficient determination of message stability. We
first describe our approach towards using an optimised broadcast to implement
a many to many reliable broadcast. Then we show how this reliable broadcast is
used to determine when a message has been received and delivered at another
node. Finally, we show how this knowledge is collected to determine message
stability.

3.1 Implementing Reliable Broadcasts

As mentioned earlier, we allow any broadcast optimisation to be utilised to
implement our reliable broadcast and thus the message stability protocol. For the
purposes of this paper we describe the use of a counter based scheme [1] to reduce
redundant broadcasts; the same scheme is used in our simulation experiments
as well.

Reliability is implemented using negative acknowledgements (nacks). A trans-
mitting node assumes that the messages are received at its neighbours. This
results in an optimistic approach for sending messages, wherein a node keeps
transmitting messages assuming the earlier messages have been received by one
or more of its neighbours. When a neighbour of the sending node realises it has
missed a reception, it sends a nack for the missing message.

Apart from the information in message headers required to implement the
broadcast optimisation we provide additional information in the headers to im-
plement reliability and determine message stability. This extra information in-
cludes the message identifier (mid) of the message being sent. A message iden-
tifier is composed of the id of the sending node and the sequence number of the
message; thus pi is a message sent by p with sequence number i.

Before we describe the message dependency relationship in detail and the
working of our protocol, we provide some terminology. We say a message is sent
by a node if the node originates the message and is the first node to transmit
the message. A message is said to be forwarded by a node if it receives a
message sent by some other node and then retransmits it. A message is said to be
delivered at a node if it has been received by the node and after fulfilling certain
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conditions is handed to the application at the node. The conditions required to
be satisfied before a message is delivered are described in Section 3.3. The next
section now describes message dependencies.

3.2 Message Dependencies

A message pi is said to be dependent on a message qj if p receives and delivers
qj before sending pi or if q = p ∧ j = i − 1. The dependency relationship is
transitive and is described in detail next.

If p sends a message pi, pi−1 is a dependency of pi, we call pi−1 the last sent
dependency of pi. A reliability scheme based only on the last sent dependency
will work fine, but since we know a sending node has also received and delivered
other messages from other nodes, we compound the message header with another
dependency. This allows a receiving node to send a nack for other messages that
the sending node delivered before sending pi.

The other dependency is the message last delivered by the sending node; that
is if a node p receives and delivers a message qk and then the first message it
sends is pi, it includes a dependency for qk in the header for pi. This dependency
is called the last delivered dependency of pi. Our protocol, as described in Section
3.3, requires that a node that receives pi delivers both last sent and last delivered
dependencies of pi before delivering pi.

The dependency relationship is transitive and thus allows nodes to work to-
wards synchronising their progress on message exchanges. Since all participating
nodes act as both senders and receivers, the dependency relationship is used to
implicitly gather acknowledgements. In the next section we show how reliability
is implemented using the dependency relationship.

3.3 Reliability via Dependencies

If a message m is a dependency of n, we write m → n. If m → n∧n → n1 . . . nl →
o then m is called the eventual dependency of o, written as m�o. When we write
a single letter like m for a message, it signifies that the sender of the message is
not important in the current context.

We now state the two fundamental rules of our protocol —

R1 A message received by a node is not delivered until all its dependencies have
been received and delivered at the receiving node.

R2 A message is not forwarded by a node till it has been delivered at that node.

From the definitions and the rules described till now, we state the lemmas —

Lemma 1. A message m delivered by a node p, is an eventual dependency of
any message, pk, sent by p after delivering m.

Proof. From the definition of dependencies, the first message pi sent by p after
delivering m includes m as a dependency; by the definition of eventual depen-
dency, all messages pj sent by p such that j > i will have m as an eventual
dependency.
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Lemma 2. A node p delivers a received message n only if all messages m such
that m � n have been delivered by p.

Proof. Follows from the definition of eventual dependency and the rule R1. ��

Corollary 3. If a node p delivers a message n it has delivered all messages m
such that m � n.

Negative Acknowledgements. Apart from the rules R1 and R2, we now
describe how negative acknowledgements are generated when a node receives a
message while some of the message’s dependencies have not been delivered at
the receiving node. Suppose a node p receives a message qi from q with two
dependencies as qi−1 and sj . From rule R1, p will deliver the message only if p
has received and delivered both qi−1 and sj .

If p can not deliver qk, it is because some eventual dependency of qk has not
been received by p. This requires p to nack for some eventual dependency of qk.
To find which eventual dependency to nack for, p checks if it has received either
of the two dependencies of qk. If it has not received any one of two dependen-
cies, p nacks for the missing dependency. If it has received the dependencies, p
recursively checks if the dependencies of the already received dependencies have
been received. When a dependency is found which has not yet been received at
p, p sends a nack for the same. We now state the third rule for our protocol.

R3 For every message received that cannot be immediately delivered, the receiv-
ing node sends a nack for some eventual dependency of the received message
which has not yet been received.

Our system requires nodes to send messages at regular intervals to allow for
nodes to receive messages which help them determine missing dependencies.
This regular timeout messages sent by each node makes our system best suited
for applications that require all-to-all streams of regular messages, like group
membership, replication and consistency management.

Reliability Proofs. In this section we present the theorems for reliability and
arguments for their correctness; but first we define the concept of reachability.
Two nodes p and q are said to be reachable from each other if they can send
and receive messages to and from each other, otherwise they are said to be
unreachable. Nodes can become unreachable from each other due to mobility
related link failures or processor failures. As an example, consider nodes p and
q being able to send and receive messages through an intermediate node r.
If r failstops and if there are no other intermediate nodes that forward their
messages, then p and q become unreachable from each other.

Further, we assume for the sake of our correctness arguments that we do not
run into the fairness problem [14] encountered with the IEEE 802.11 MAC proto-
col. The eventual fair broadcast assumption guarantees that every participating
node broadcasts and receives messages and is stated as —
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Eventual fair broadcast assumption — In an infinite execution, each node
broadcasts messages infinitely often, the immediate neighbours of the
node receive infinitely many of those messages and, if a message is re-
broadcast infinitely often, all neighbours of the sending node eventually
receive that message.

To allow a broadcast message to be propagated to the network we introduce the
final rule for our protocol.

R4 Every message that is received and delivered by a node is forwarded by the
receiving node.

Rules R2 and R4 work together to first make sure a message is not forwarded
till it has been delivered, and at the same time a message is guaranteed to be
forwarded when it has been delivered. From the assumptions and rules described,
we now state the property that guarantees the dissemination of a message.

Eventual Reception Property — For any message, if any node p broad-
casts or receives a message, then every node that remains reachable from
p, eventually receives it.

To establish this property we prove Theorems 4, 5 and 6. But before we do so,
we state one final assumption —

No spurious messages assumption — All messages received by any node
have been sent by some participating node.

Theorem 4. Given two nodes p and q remain neighbours, if q receives a mes-
sage m forwarded by p, q eventually delivers the message.

Proof. From Corollary 3, p has received and delivered all eventual dependencies
of m, and from rule R3, q nacks for missing dependencies of m. Given p and q
remain neighbours and the eventual broadcast assumption, q eventually delivers
m. ��
Theorem 5. Every message sent by a node p is eventually received by every
node that remains reachable from p.

Proof. The proof for this theorem is presented in Appendix I.

Theorem 6. Every message received by a node p is eventually received by every
node that remains reachable from p.

Proof. When p receives the message m, by Theorem 4, p delivers m; by rule R4,
p forwards m; from the no spurious messages assumption m has been broadcast
by some participating node and finally from Theorem 5 all nodes receive m. ��
The dependencies and the many to many reliable broadcast allow us to imple-
ment an useful facility called the “Observable Predicate for Deliver”, or OPD.
The OPD allows a node to determine if another node has yet received and de-
livered a message sent by any of the participating nodes. The next subsection
describes how we implement the OPD and then we describe how the OPD is
used to determine message stability.
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3.4 Observable Predicate for Delivery

The Observable Predicate for Delivery, or OPD, allows a node p to determine if
the sender of a certain message qi has received and delivered another message
rj before sending qi. We say, OPD(p, rj , qi) is true if node p can determine that
the node q has delivered the message rj before q sent qi. The Trans broadcast
system in [15] first employed the property to build a partial relation between
messages and to determine message stability.

For the purposes of evaluating the OPD the protocol maintains a directed
graph at each node. The directed graph is a graph of message identifiers. We call
this directed graph the “Delivered Before Graph”, or DBG. A message identifier
for message sk sent by s has two edges to it in the DBG, one from each of sk’s
dependencies. Thus there are edges in to sk from sk−1 and the message last
delivered at s when sk was sent.

The main idea for determining the OPD is due to transitivity relationship
in message dependencies and the way DBG is constructed. In a DBG there is a
path from a message m to n if and only if m �n. Also from rule R2, if m� n, we
know that the sender of n is guaranteed to have delivered m before sending n.
We later prove these statements as Theorem 7, but first we state the conditions
under which OPD(p, rj , qi) evaluates to true. The OPD(p, rj , qi) is true if —

1. p has delivered a sequence of messages starting from message rj and ending
in message qi.

2. There is a path from rj to qi in p’s DBG.

Theorem 7. If there is a path from message pi to qj in a node r’s DBG, then
q has received and delivered pi before broadcasting qj.

Proof. From the the definition of DBG, pi � qj ; from rule R2 q has delivered qj ;
finally from Corollary 3, q has delivered pi. ��

3.5 Message Stability

In this section we describe how message stability is determined using OPD. We
assume the membership of the mobile ad-hoc network under consideration is
known to be the set of nodes, M, and remains the same during our system
runs. We take the liberty of this assumption for this paper, but our broadcast
scheme allows tracking of virtual synchronous membership as elaborated further
in [16]. For the simulations, we start measuring message stability only after an
initial membership has been installed. Since we are interested only in measuring
message stability characteristics, we chose scenarios where there are no partitions
and no nodes fail.

Given the OPD can be evaluated at all the participating nodes, determining
message stability becomes straight forward. On reception of a message, the re-
ceiving node uses the OPD mechanism to evaluate if any of the unstable messages
has now become stable.
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To determine the same we introduce the “Message Last Delivered” mld array.
This array maintains references to the messages last delivered at each node from
all other nodes in M. Thus, mld[p] at node q is the message last delivered
from p at node q. Given the definitions of mld and OPD we have the following
lemma —

Lemma 8. A message qi is determined as stable at node p when ∀n ∈ M
OPD(p, qi, mld[n]) = true.

Proof. The proof follows from the definition of OPD. When the condition in
the lemma is true, p knows that the message qi has been delivered at all nodes
participating in the broadcast, and thus qi is stable at p. ��
Next we prove the liveness of the protocol for determining message stability. We
state the theorem —

Theorem 9. In an infinite execution of the protocol, when nodes do not be-
come unreachable from each other, a message qi eventually becomes stable at all
participating nodes.

Proof. From Theorem 6, in an infinite execution the message qi is eventually re-
ceived at all participating nodes. Further from the eventual broadcast assump-
tion, all participating nodes will broadcast messages which by Lemma 1 will
have qi as an eventual dependency. Again from Theorem 6, these messages will
be received at all other nodes, thus resulting in qi being determined stable at all
participating nodes. ��
Our message stability approach involves checking for paths in the DBG. This
is the computationally intensive; one that we consider as a good trade off for
reduction in number of message transmissions.

4 Simulations

The goal of the simulation experiments is to verify that the OPD based mecha-
nism for determining message stability scales well with the number of nodes in
the network, the number of nodes per unit area (node density) and node speeds.

We use the ns2 simulator (v 2.27) [17] with the two-ray ground model and
a transmission range of 250m, using the random way point mobility model. The
number of nodes vary from 4 to 36, and simulations are run for both static and
mobile scenarios. For the mobile scenarios we compare runs using speeds of 2 m/s
and 8 m/s. Each of the scenarios are run 10 times and all values shown are an
average of the results generated from the scenarios. We do not run simulations
for more than 36 nodes as it runs into scalability issues with ns2 when all-to-all
broadcasts are simulated.

To observe the effects of network size and node density we ran simulations
with static nodes while varying the distance between the nodes. We use a square
grid of n x n nodes and vary the distance between nodes along the length and
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the breadth of the grid. We use 40, 100, 140 and 200 meters as the inter-node
distance, d. The maximum distance between nodes is thus the distance between
diagonally opposite nodes, viz

√
2(n − 1) ∗ d. So for the 36 node, 40m scenario,

the maximum distance between nodes is 283m. With the transmission radius set
to 250m, a single transmission from a node covers almost all nodes in the most
dense and largest network. Whereas for the least dense network, with d = 200m,
the maximum distance between nodes is about 1414m, requiring a number of
forwards of a message to propagate the message across the network.

To isolate the effects of node density from mobility scenarios we chose the
mobility scenarios such that the ratio of the aggregate area covered by the radio
ranges of all nodes to the geographical area is the same. We call this ratio the
“coverage ratio”. For the mobility scenarios we kept this ratio equal to 10. Thus
given the number of nodes and the transmission radius, we can determine the
geographical area to run the simulations.

To compare the mobile cases to the static case, we ran simulations for a static
network with the coverage ratio same as that chosen for the mobile network. With
inter-node distance, d = 140m, we get the coverage ratio of 10 in the static
scenarios, the same as that for the mobile scenarios. In the figures below we have
plotted this static case both in the graph for static and mobile network, this helps
us observe the affect of mobility, given networks with same node density.

Timeouts. For the simulations each node sends a message at variable time
intervals; all participating nodes act as both senders and receivers. The time
interval between message transmissions by a node is made proportional to the
number of neighbours of the sending node. Each node starts by using a randomly
selected time period between 0.1 and 0.15sec. Given the number of neighbours1,
|neighbours|, a sending node then chooses a random timeout interval from be-
tween 0.1 × |neighbours| and 0.15 × |neighbours|. Such an approach results in
timeout intervals of up to 4 sec in a high density network. The timeout approach
described above reduces the probability of collisions, but increases end to end
latency of communication.

4.1 Results

All figures present two graphs, one for the static network and the second for
the mobility scenario. The graph for the mobility scenarios includes one curve
from the static scenarios with the same coverage ratio. This way we are also able
to compare the performance of the mobile scenario with static scenarios with
different node density.

One of the metrics we use is the number of messages transmitted in the
entire network while stabilising a message. To measure the same, we count the
average number of message transmissions in the entire network after a message
is sent, till the message is stabilised at all nodes. To capture the latency aspect
1 A node easily determines the set of its neighbours by looking at the messages received

and whether they were forwarded to reach this node or not.
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of our system’s performance we later present results for time required to deliver
messages across participating nodes.

Figure 1 shows the number of messages required to determine message sta-
bility. For the static cases we see a linear increase in the number of transmissions
with the increase in the number of nodes in the network. We also see that the
number of message transmissions required does not show much variation with
the density of the network. This comes as a surprise to us, as we expected high
density network to require fewer retransmissions. This could be a result of ei-
ther the counter based scheme not saving too many rebroadcasts or the minimal
broadcast optimisations provided by a counter based scheme being counteracted
by the increase in number of collisions for dense networks.
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Fig. 1. Average number of messages required to determine stability

The mobile scenarios show an interesting behaviour as well. We see a similar
performance up till about 25 nodes for both the mobile cases and the static
cases. But at 32 nodes, the number of transmissions required for both the mobile
scenario are similar and only about 50% higher than those for the static case.
This shows our protocol handles mobility quite well.

Figure 2 shows the average number of times each message is forwarded before
it stabilises on all the participating nodes. Again we see a linear increase over the
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static scenarios and no change with the density of the network. The interesting
result is again when we compare the mobile and static scenarios with similar node
density. The mobile and the static cases show similar performance till about 25
nodes, and the mobile cases then show a 50% to a 100% increase in the number
of times a message is forwarded as compared to the static cases. We also see
the 8m/s scenario showing a better performance than the 2m/s scenario, this is
probably because of spatial reuse [18] caused by higher mobility.
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Fig. 3. Average Delivery Times

Figure 3 shows how the message delivery time is affected. To measure the
delivery time we measure the average time elapsed between a message send and
the times the message is delivered at all nodes. We then take the ratio of this
average delivery time of a scenario and the average timeout used by all nodes in
that scenario. This way we normalise the effect of the timeouts used for different
scenarios. In other words, the graphs show the delivery times for the scenarios
if the timeout was 1 sec.

The results for the static case show a wide variation over the node density,
yet there is a tendency for the delivery times to normalise as the number of
nodes increases. The graphs shows that the delivery times are affected by the
node density. An interesting observation is that the normalised delivery time for
the static scenarios are always between 100 and 450 msec. For the mobile cases
the delivery times are close to those of the static scenarios till about 25 nodes,
but are substantially higher for more than 25 nodes. This shows that for a large
network, mobility does affect the delivery times of a message; even while the
effort required to stabilise a message is not affected that much.

5 Conclusions

In this paper we presented an approach to providing a reliable broadcast us-
ing message dependencies. The approach does not require explicit acknowledge-
ments, instead message dependencies provide implicit acknowledgements. The
reliable broadcast allows the use of any existing broadcast redundancy reduc-
tion techniques. We further presented how this reliable broadcast which uses
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message dependencies can be used to determine message stability, an important
property for practical implementations of a broadcast protocol.

Our simulation results show that our protocol scales well with node density
of the network and node mobility. In fact for networks with up to 25 nodes the
results for static and mobile cases are very similar. The simulation results give
us confidence that our broadcast scheme should be used to implement higher
level services like group membership and agreement. We are implementing our
protocol that will allow us to compare it with the one presented in [12].
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Appendix I

Here we present the proof for Theorem 5. To prove the theorem we consider the
four cases as presented in Figure 4. The cases (i) and (ii) assume static nodes
and we use induction to prove the theorem under the static nodes assumption.
Cases (iii) and (iv) allow for mobile nodes and we again use an induction to
prove the theorem.

p q

r

k

k−1

q

r
p

i ii

iii iv

q’

r
p

q q’’

q’s

t

p q

Fig. 4. Node p sends a message, q eventually receives the message

If a node p sends a message pi, nodes that stay in the immediate neighbour-
hood of p eventually receive pi. This is the case in Figure 4 (i).

case (i) From the eventual fair broadcast assumption, q eventually receives
some message pk from p, such that k > i. From Lemma 1, pi � pk, thus
from rule R3, q nacks for some dependency of pk. By the definition of de-
pendencies, q eventually nacks for pi and then again from the eventual fair
broadcast assumption, receives the same.
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Next we prove under the assumption of static nodes, that if a node p sends a
message, all nodes that remain reachable from p receive the message. The proof
is an induction on the series of neighbouring nodes that a message goes through.

case (ii) Figure 4 (ii) presents this case. If the node p sends a message pi,
from case (i), q eventually receives the message, this is the base case for
the induction. As the inductive step, we assume (k−1)th neighbour receives
the message and prove that whenever (k − 1)th neighbour receives pi, (k)th

neighbour receives pi. Assume that the (k − 1)th and kth neighbours have
identities k−1 and k, as shown in the figure. Then from Theorem 4 and rule
R4, k − 1 delivers and forwards pi. By Lemma 1 and the argument for case
(i), k eventually receives pi via k.

Next we consider mobility and show that if a node broadcasts a message all
nodes that remain reachable from p receive the message, even if they are mobile
and do not stay in the immediate neighbourhood of the sending node. First we
prove that if a node q moves away to q′ shown in Figure 4 (iii), q eventually
receives the message sent by p.

case (iii) By case (i), r receives pi and by Theorem 4, r delivers pi. Then by
R4, r forwards pi. This case then reduces to case (i).

Finally, we prove that if q moves such that there is a sequence of nodes that have
to forward pi, as in Figure 4 (iv), q still eventually receives the message. The
proof for this case is an induction on the series of nodes the message is forwarded
through to reach q.

case (iv) Case (iii) is the base case for the induction; the length of the series
of intermediate nodes is 1. For the inductive step, we assume that if q moves
to location shown as q′′ as shown in Figure 4 (iv), and r is replaced by a
series of nodes of length |l − 1|, such that the last node in the series is s,
q still receives pi. The proof for the inductive step when the length of the
series is l, and q moves to q′ such that the last node in the series is t is shown
now. Given the assumption for the series with length l − 1, s has received
pi. From Theorem 4 and rule R4, s delivers and forwards pi. Again from the
argument in case (i), t receives and delivers pi via s and then q′ receives pi

via t. ��
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